Chapter 4

Experimental Designs and Their Analysis

Design of experiment means how to design an experiment in the sense that how the observations or
measurements should be obtained to answer a query in a valid, efficient and economical way. The designing
of the experiment and the analysis of obtained data are inseparable. If the experiment is designed properly
keeping in mind the question, then the data generated is valid and proper analysis of data provides the valid
statistical inferences. If the experiment is not well designed, the validity of the statistical inferences is
questionable and may be invalid.

It is important to understand first the basic terminologies used in the experimental design.

Experimental unit:
For conducting an experiment, the experimental material is divided into smaller parts and each part is
referred to as an experimental unit. The experimental unit is randomly assigned to treatment is the

experimental unit. The phrase “randomly assigned” is very important in this definition.

Experiment:

A way of getting an answer to a question which the experimenter wants to know.

Treatment

Different objects or procedures which are to be compared in an experiment are called treatments.

Sampling unit:
The object that is measured in an experiment is called the sampling unit. This may be different from the

experimental unit.

Factor:

A factor is a variable defining a categorization. A factor can be fixed or random in nature. A factor is termed
as a fixed factor if all the levels of interest are included in the experiment.

A factor is termed as a random factor if all the levels of interest are not included in the experiment and those

that are can be considered to be randomly chosen from all the levels of interest.

Replication:

It is the repetition of the experimental situation by replicating the experimental unit.
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Experimental error:

The unexplained random part of the variation in any experiment is termed as experimental error. An

estimate of experimental error can be obtained by replication.

Treatment design:

A treatment design is the manner in which the levels of treatments are arranged in an experiment.

Example: (Ref.: Statistical Design, G. Casella, Chapman and Hall, 2008)

Suppose some varieties of fish food is to be investigated on some species of fishes. The food is placed in the
water tanks containing the fishes. The response is the increase in the weight of fish. The experimental unit is
the tank, as the treatment is applied to the tank, not to the fish. Note that if the experimenter had taken the
fish in hand and placed the food in the mouth of fish, then the fish would have been the experimental unit as

long as each of the fish got an independent scoop of food.

Design of experiment:

One of the main objectives of designing an experiment is how to verify the hypothesis in an efficient and
economical way. In the contest of the null hypothesis of equality of several means of normal populations
having the same variances, the analysis of variance technique can be used. Note that such techniques are
based on certain statistical assumptions. If these assumptions are violated, the outcome of the test of a
hypothesis then may also be faulty and the analysis of data may be meaningless. So the main question is
how to obtain the data such that the assumptions are met and the data is readily available for the application
of tools like analysis of variance. The designing of such a mechanism to obtain such data is achieved by the
design of the experiment. After obtaining the sufficient experimental unit, the treatments are allocated to the
experimental units in a random fashion. Design of experiment provides a method by which the treatments
are placed at random on the experimental units in such a way that the responses are estimated with the

utmost precision possible.

Principles of experimental design:

There are three basic principles of design which were developed by Sir Ronald A. Fisher.
(1) Randomization
(i1))  Replication

(iii))  Local control
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(i) Randomization

The principle of randomization involves the allocation of treatment to experimental units at random to
avoid any bias in the experiment resulting from the influence of some extraneous unknown factor that
may affect the experiment. In the development of analysis of variance, we assume that the errors are
random and independent. In turn, the observations also become random. The principle of randomization

ensures this.

The random assignment of experimental units to treatments results in the following outcomes.
a) It eliminates systematic bias.
b) Itis needed to obtain a representative sample from the population.
c) It helps in distributing the unknown variation due to confounded variables throughout the

experiment and breaks the confounding influence.

Randomization forms a basis of a valid experiment but replication is also needed for the validity of the

experiment.

If the randomization process is such that every experimental unit has an equal chance of receiving each

treatment, it is called complete randomization.

(ii) Replication:

In the replication principle, any treatment is repeated a number of times to obtain a valid and more
reliable estimate than which is possible with one observation only. Replication provides an efficient way
of increasing the precision of an experiment. The precision increases with the increase in the number of
observations. Replication provides more observations when the same treatment is used, so it increases

.. . . . 2 . —
precision. For example, if the variance of x is ¢~ than variance of the sample mean x based on n

2

. . O . _
observation is —. So as n increases, Var(Xx) decreases.
n

(ii) Local control (error control)

The replication is used with local control to reduce the experimental error. For example, if the
experimental units are divided into different groups such that they are homogeneous within the blocks,
then the variation among the blocks is eliminated and ideally, the error component will contain the

variation due to the treatments only. This will, in turn, increase the efficiency.
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Complete and incomplete block designs:
In most of the experiments, the available experimental units are grouped into blocks having more or less
identical characteristics to remove the blocking effect from the experimental error. Such design is termed as

block designs.

The number of experimental units in a block is called the block size.
If

size of block = number of treatments

and

each treatment in each block is randomly allocated,

then it is a full replication and the design is called a complete block design.

In case, the number of treatments is so large that a full replication in each block makes it too heterogeneous
with respect to the characteristic under study, then smaller but homogeneous blocks can be used. In such a
case, the blocks do not contain a full replicate of the treatments. Experimental designs with blocks containing

an incomplete replication of the treatments are called incomplete block designs.

Completely randomized design (CRD)

The CRD is the simplest design. Suppose there are v treatments to be compared.
e All experimental units are considered the same and no division or grouping among them exist.
e In CRD, the v treatments are allocated randomly to the whole set of experimental units, without
making any effort to group the experimental units in any way for more homogeneity.
e Design is entirely flexible in the sense that any number of treatments or replications may be used.
e The number of replications for different treatments need not be equal and may vary from treatment to
treatment depending on the knowledge (if any) on the variability of the observations on individual

treatments as well as on the accuracy required for the estimate of individual treatment effect.

Example: Suppose there are 4 treatments and 20 experimental units, then
- the treatment 1 is replicated, say 3 times and is given to 3 experimental units,
- the treatment 2 is replicated, say 5 times and is given to 5 experimental units,
- the treatment 3 is replicated, say 6 times and is given to 6 experimental units

and

finally, the treatment 4 is replicated [20-(6+5+3)=]6 times and is given to the remaining 6

experimental units.
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o All the variability among the experimental units goes into experimented error.
e CRD is used when the experimental material is homogeneous.

e CRD is often inefficient.

e CRD is more useful when the experiments are conducted inside the lab.

e CRD is well suited for the small number of treatments and for the homogeneous experimental

material.

Layout of CRD
Following steps are needed to design a CRD:
» Divide the entire experimental material or area into a number of experimental units, say 7.
» Fix the number of replications for different treatments in advance (for given total number of
available experimental units).
» No local control measure is provided as such except that the error variance can be reduced by

choosing a homogeneous set of experimental units.

Procedure
Let the v treatments are numbered from 1,2,..,v and 71, be the number of replications required for "

treatment such that Zni =n.

i=1

= Select 7, units out of # units randomly and apply treatment 1 to these 7, units.

(Note: This is how the randomization principle is utilized is CRD.)
» Select 7, units out of (7—n,) units randomly and apply treatment 2 to these 7, units.
= Continue with this procedure until all the treatments have been utilized.

= Generally, the equal number of treatments are allocated to all the experimental units unless no

practical limitation dictates or some treatments are more variable or/and of more interest.

Analysis
There is only one factor which is affecting the outcome — treatment effect. So the set-up of one-way analysis

of variance is to be used.

n.

ceg I e

Y, + Individual measurement of j* experimental units for /" treatment i = 1,2,...,v,j = 1,2,.

Y, + Independently distributed following N (u+a,c’) with Zn,.a,. =0.
i=l1

4. overall mean

a.: ™ treatment effect

1
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Hy:oy=a,=..=a,=0

H,:All as are not equal.

The data set is arranged as follows:

Treatments

1 2 v
Y Yaoe Ia
e Tmom b
Vi Van, =+ Vo,
LT, .7,

"

where 7, = z Yy 1s the treatment total due to i effect,
JAl

G= Z:Z: = ZZ Y;  is the grand total of all the observations.

i=1 j=1
In order to derive the test for H,, we can use either the likelihood ratio test or the principle of least squares.
Since the likelihood ratio test has already been derived earlier, so we choose to demonstrate the use of the

least-squares principle.

The linear model under consideration is

yy=Htate, i=12,.,v,j=12,..n
where ¢, 's are identically and independently distributed random errors with mean 0 and variance o’. The

normality assumption of &'s is not needed for the estimation of parameters but will be needed for deriving

the distribution of various involved statistics and in deriving the test statistics.

v

Lt S=32 =33, -u-a).

i=l j=I i=l j=1

Minimizing S with respect to 4 and «,, the normal equations are obtained as

ﬁ=0:n/1+21n[05i =0

ou i=1

oS o

— =0=nu+na = i=12,..,v.
aai lﬂ [t} Zylj

=
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Solving them using anai =0, we get

i=1

> ™

= 00
i:yio _yoa

K

N : .. R N o
where ¥, = —Z ¥, is the mean of observation receiving the i treatment and y,, = —ZZJ/I»,- is the mean
= AV
i J=1 =l j=1

of all the observations.

The fitted model is obtained after substituting the estimate £ and ¢, in the linear model, we get
Yy = Ata e,

OF ¥ = Voo + (Vi = Voo ) + (¥ = Vip)

or  (V; = Vo) =V = Vo) + (v = ¥).

Squaring both sides and summing over all the observation, we have

v oon _ 5 v _ _ 5 vy oo _ 5
ij_ 00 = i io ~ Yoo ij_ 00
220 =5 = 2 (V=0 A2, 2 (= )
i=1

ol ! !

Sum of squares

Total sum Sum of squares
or =| due to treatment |+
of squares due to error
effects

or 18§ = SSTr + SSE

= Since ZZ()/U—?M)ZO, so TSS is based on the sum of (n—1) squared quantities. The 7SS

i=1 j=1
carries only (n—1) degrees of freedom.

= Since Zni (»y,-»,)=0, so SSTr is based only on the sum of (v -1) squared quantities. The

i=1
SSTr carries only (v -1) degrees of freedom.

= Since Z n(y; -v,)=0 foralli=12,..,v, soSSE is based on the sum of squaring n quantities like

i=1

(¥, — ¥i,) with v constraints Z( Y; = Y:0)=0, So SSE carries (n—v) degrees of freedom.
Jj=1
= Using the Fisher-Cochran theorem,

TSS = SSTr + SSE
with degrees of freedom partitioned as

m-1)=@w-1) +(m—-v).
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Moreover, equality in 78S = SSTr + SSE has to hold exactly. To ensure that the equality holds exactly, we
find one of the sums of squares through subtraction. Generally, it is recommended to find SSE by
subtraction as

SSE = TSS - SSTr
ISS=3 > (v, =7,)

i=1 j=1
v oon 2
— : G
i=1 j=1 n

where

G=2.2 5

i=l j=I

SSTF:Z”[(EO_J_}OO)Z

J=1

v ]—;2 GZ
‘E[Z]T

n;
where T} = Z Yy
Jj=1
2
—: correction factor .

n
Now under H,:¢, =, =...=a, =0, the model become
Y, =p+ey,

v o
C e e 2
and minimizing § = E E &

i=1 j=1
with respect to u gives

oS ~ G _

00"

u n
The SSE under H, becomes

SSE=2"2 (3 =7.)’
i=1 j=1
and thus 7SS = SSE. This 7SS under H, contains the variation only due to the random error whereas the
earlier 7SS = SSTr+ SSE contains the variation due to treatments and errors both. The difference between
the two will provides the effect of treatments in terms of the sum of squares as

SSTr=>"n(3-%,) .

i=l1
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e Expectations

E(SSE)=3. Y E(y, - 7,)’

i=1 j=I

=Y 3,5

i=l j=1

=YY EE) - Y nEED)

i=1 j=1

n—vy

E(MSE) = E( SSE j =0’

E(SSTr) =Y nE®F,~7,)

i=1

\4
= ZniE(a/' +6—‘10 _(?00)2

i=1

v \d
_ 2 -2 =2
S+ {zn,.gm _ na‘m}
i=1 i=1
v 5 v 0.2 0.2
S| ST
i=1 n

n.

i=1 i

4
=Y na’ +(v-1)o’
i=1

SStr 1
E(MSTr)=E =— > na’+o’.
(MSTr) (Hj HZI 2

In general E(MSTr)# o butunder H,, all @, =0 and so E(MSTr)=0".
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Distributions and decision rules:

Using the normal distribution property of &;'s, we find that y,'s are also normal as they are the linear

combination of &;,'s.

- SS{F ~27*(v=1) under H,
o
- SSZE ~ y*(n-v) under H,
o
—S8S8Tr and SSE are independently distributed
_MStr F(v—1,n—v) under H,,.
MSE

— Reject H; at a* level of significance if ¥ > F,.

[Note: We denote the level of significance here by « * because & has been used for denoting the factor]

The analysis of variance table is as follows

Source of Degrees Sum of Mean sum F
variation of freedom  squares of squares

MSTr
Between treatments v - 1 SSTr MSTr

MSE
Errors n-v SSE MSE
Total n-1 TSS

Randomized Block Design

If a large number of treatments are to be compared, then a large number of experimental units are required.
This will increase the variation among the responses and CRD may not be appropriate to use. In such a

case when the experimental material is not homogeneous and there are v treatments to be compared, then it

may be possible to
e group the experimental material into blocks of sizes v units.
e Blocks are constructed such that the experimental units within a block are relatively homogeneous
and resemble to each other more closely than the units in the different blocks.
e If there are b such blocks, we say that the blocks are at b levels. Similarly, if there are v treatments,
we say that the treatments are at v levels. The responses from the b levels of blocks and v levels of

treatments can be arranged in a two-way layout. The observed data set is arranged as follows:
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1 yi V21 yil cee Y1 Bi=yo1

2 yi2 y22 . yi2 eee VB2 B2=yo2
£
-]
£
= J i 2 e i R 1 Bj= yoj
=

v Viv Vv . YViv cee Yy Bbr=yob

Layout:

A two-way layout is called a randomized block design (RBD) or a randomized complete block design (RCB)
if, within each block, the v treatments are randomly assigned to v experimental units such that each of the v!
ways of assigning the treatments to the units has the same probability of being adopted in the experiment and

the assignment in different blocks are statistically independent.

The RBD utilizes the principles of design - randomization, replication and local control - in the following

way:

1. Randomization:
- Number the v treatments 1,2,...,v.
- Number the units in each block as 1, 2,...,v.

- Randomly allocate the v treatments to v experimental units in each block.
2. Replication
Since each treatment is appearing in each block, so every treatment will appear in all the blocks. So each
treatment can be considered as if replicated the number of times as the number of blocks. Thus in RBD, the
number of blocks and the number of replications are same.
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3. Local control

Local control is adopted in RBD in the following way:
- First form the homogeneous blocks of the experimental units.

- Then allocate each treatment randomly in each block.

The error variance now will be smaller because of homogeneous blocks and some variance will be parted

away from the error variance due to the difference among the blocks.

Example:
Suppose there are 7 treatments denoted as 7;,7,,..,7; corresponding to 7 levels of a factor to be included in 4

blocks. So one possible layout of the assignment of 7 treatments to 4 different blocks in an RBD is as

follows
Bock L[ 7, |7, [, [ [, |5 g
Bock2 [ 7, |7, |1, |1 | |1 |g
Boek3 |7, [1, [ | | |5 |7
Block4 | 7, | T, T I, | T L | L

Analysis

Let

; + Individual measurements of j treatment in i® block, i =1,2,...,b, j=12,....,v.
;s are independently distributed following N(u+ S, +7,, o)
where u: overall mean effect

L. ™ block effect

z,: j™ treatment effect

such that iﬂl =0, Zv:rj =0 .
i=1 j=1
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There are two null hypotheses to be tested.
- related to the block effects

Hy:B=p=.=8=
- related to the treatment effects
H,:t,=7,=...=7,=0.

The linear model, in this case, is a two-way model as

Yy ,u+,8+r+g, =1,2,..,b; j=12,..,v
where ¢, are identically and independently distributed random errors following a normal distribution with

. 2
mean 0 and variance o~ .

The tests of hypothesis can be derived using the likelihood ratio test or the principle of least squares. The use

of likelihood ratio test has already been demonstrated earlier, so we now use the principle of least squares.

Minimizing S = Zb:zv:gj = Zb“zv:(yij -u-p —Tj)2

i=l j=I i=l j=I
and solving the normal equation
a—Szo,a—Szo, a5 =0 foralli=12,..,b, j=1,2,..,v
ou op, 0T,

the least squares estimators are obtained as

The fitted model is

Yy =+ BT +E,
:yoo+(-)_}io_)700)+(J70j_J_/on)+(y1]'_-)_}io_-)_/oj+-)_}oo)'

Squaring both sides and summing over i and j gives

ZZ(y,, Vo)’ —VZ(ym Vo)’ +bZ(yo, Vo)’ +ZZ(yI, Vo= Vo +V0s)

i=l j=1 =l j=I

or 7SS =SSBl + SSTr + SSE

with degrees of freedom partitioned as

bv—1=(b=1)+v—-1)+>B-)v-1).
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The reason for the number of degrees of freedom for different sums of squares is the same as in the case of

CRD.

b

Here 755 =YY (3, ~7,,)°

i=l j=1

2

1%

B = Z y; +i" block total
j=1

SSTr :bZ(J_;oj _)_}00)2
Jj=1

b
T.=> y,:j" treatment total
i=1

b v
SSE=Y"3" (3, =T = Vyy + 7,

i=1 j=1
The expectations of mean squares are

b
E(MSBI) = E(@j = +%z Vs
— 1=

b-1
E(MSTr):E(SSTrjza%ri 72
- V—l j:1 /
E(MSE)=E __SSE =0’.
(b-D(v-1)
Moreover,
SSBI
(b-1)=—~ 1’ (b-1)
o
-2 o)
o
SSE
(b-DH(v-1) - 72(b-D(v-1).
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Under H,: B, =4, =..= 5, =0,
E(MSBI) = E(MSE)

and SSB! and SSE are independent , so

MSBI
=——~F(b-L(-1)(v-1)).
" MSE (( ( )(v=1)
Similarly, under H, :7,=7,=...=7,=0, so

E(MSTr)= E(MSE)
and SSTr and SSE are independent, so

B MSTr
" MSE

Reject Hy, if £, > F,((b=1),(b-D(v-T)

~ F(v=1),(b-1)(v=1)).

Reject Hy if F, > F((v=1),(b-1)(v~1)

If H,, is accepted, then it indicates that the blocking is not necessary for future experimentation.

If H,, is rejected then it indicates that the treatments are different. Then the multiple comparison tests are

used to divide the entire set of treatments into different subgroup such that the treatments in the same
subgroup have the same treatment effect and those in the different subgroups have different treatment

effects.

The analysis of variance table is as follows

Source of Degrees Sum of Mean F
variation of freedom  squares squares

Blocks b -1 SSBI MSBI Fy,
Treatments v- 1 SSTr MSTr F,
Errors (b-1D(v-1) SSE MSE

Total bv-1 1SS
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Latin Square Design

The treatments in the RBD are randomly assigned to » blocks such that each treatment must occur in each
block rather than assigning them at random over the entire set of experimental units as in the CRD. There are
only two factors — block and treatment effects — which are taken into account and the total number of
experimental units needed for complete replication are bv where b and v are the numbers of blocks and

treatments respectively.

If there are three factors and suppose there are b, v and k levels of each factor, then the total number of
experimental units needed for a complete replication are bvk. This increases the cost of experimentation and
the required number of experimental units over RBD.

In Latin square design (LSD), the experimental material is divided into rows and columns, each having the
same number of experimental units which is equal to the number of treatments. The treatments are allocated
to the rows and the columns such that each treatment occurs once and only once in each row and in each

column.

In order to allocate the treatment to the experimental units in rows and columns, we take help from Latin

squares.

Latin Square:

A Latin square of order p is an arrangement of p symbols in P’ cells arranged in p rows and p columns

such that each symbol occurs once and only once in each row and in each column. For example, to write a
Latin square of order 4, choose four symbols — A, B, C and D. These letters are Latin letters which are used
as symbols. Write them in a way such that each of the letters out of A, B, C and D occurs once and only once

in each row and each column. For example, as

g O H| >
> O O w
o > O O
Q| Wl »| T

This is a Latin square.
We consider first the following example to illustrate how a Latin square is used to allocate the treatments and

in getting the response.
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Example:
Suppose different brands of petrol are to be compared with respect to the mileage per litre achieved in motor
cars.
Important factors responsible for the variation in mileage are
- the difference between individual cars.

- the difference in the driving habits of drivers.

We have three factors — cars, drivers and petrol brands. Suppose we have
- 4 types of cars denoted as 1, 2, 3, 4.
- 4 drivers that are represented by a, b, c, d.
- 4 brands of petrol are indicated as A, B, C, D.

Now the complete replication will require 4x4x4 =64 the number of experiments. We choose only 16

experiments. To choose such 16 experiments, we take the help of the Latin square. Suppose we choose the

following Latin square:

A B CD
B CD A
C DAB
D A BC

Write them in rows and columns and choose rows for drivers, columns for cars and letter for petrol brands.
Thus 16 observations are recorded as per this plan of treatment combination (as shown in the next figure)
and further analysis is carried out. Since such design is based on Latin square, so it is called as a Latin

square design.

CARS
1 2 3 4

a A B C D

b B © D A
()] \
o
o c c D \ A B
(=]

d D A B C

g Driverd” will use petrol
i car 4
Drrivar 2™ will us: petrel Aincar L Drivar b will mepé;:rol Lin car 2.
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Another choice of a Latin square of order 4 is
CBAD
B CD A
A DCB
D A BC
This will again give a design different from the previous one. The 16 observations will be recorded again

but based on different treatment combinations.

Since we use only 16 out of 64 possible observations, so it is an incomplete 3-way layout in which each of
the 3 factors — cars, drivers and petrol brands are at 4 levels and the observations are recorded only on 16 of
the 64 possible treatment combinations.
Thus in an LSD,
e the treatments are grouped into replication in two-ways
» once in rows and
» and in columns,
e rows and columns variations are eliminated from the within treatment variation.

» In RBD, the experimental units are divided into homogeneous blocks according to the
blocking factor. Hence it eliminates the difference among blocks from the experimental
error.

» In LSD, the experimental units are grouped according to two factors. Hence two effects
(like as two block effects) are removed from the experimental error.

»  So the error variance can be considerably reduced in LSD.

The LSD is an incomplete three-way layout in which each of the three factors, viz, rows, columns and

treatments, is at v levels each and observations only on v of the v’ possible treatment combinations are

taken. Each treatment combination contains one level of each factor.

The analysis of data in an LSD is conditional in the sense it depends on which Latin square is used for

allocating the treatments. If the Latin square changes, the conclusions may also change.

We note that Latin squares play an important role is an LSD, so first we study more about these Latin

squares before describing the analysis of variance.
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Standard form of Latin square
A Latin square is in the standard form if the symbols in the first row and first columns are in the natural

order (Natural order means the order of alphabets like A, B, C, D,...).

Given a Latin square, it is possible to rearrange the columns so that the first row and first column remain in a

natural order.

Example: Four standard forms of 4x4 Latin square are as follows.

ABCD |[ABCD ([ABCD |ABCD
BADC BCDA |[BDAC |BADC
CDBA [ CDAB |[CADB |CDAB
DCAB DABC | DCBA |[DCBA

For each standard Latin square of order p, the p rows can be permuted in p! ways. Keeping a row fixed, vary

and permute (p - 1) columns in (p - 1)! ways. So there are p!(p - 1)! different Latin squares.

For illustration

Size of square Number of Value of Total number of
Standard squares pi(1 - p)! different squares
3 x3 1 12 12
4 x4 4 144 576
5 x5 56 2880 161280
6 x6 9408 86400 812851250
Conjugate:

Two standard Latin squares are called conjugate if the rows of one are the columns of other.

For example

ABCD ABCD
BCDA and BCDA
CDAB CDAB
DABC D ABC

are conjugate. In fact, they are self conjugate.

A Latin square is called self conjugate if its arrangement in rows and columns are the same.
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Transformation set:

A set of all Latin squares obtained from a single Latin square by permuting its rows, columns and symbols is

called a transformation set.

From a Latin square of order p, p!(p - 1)! different Latin squares can be obtained by making p! permutations

of columns and (p - 1)! permutations of rows which leaves the first row in place. Thus

Number of different pl(p - 1)! X number of standard Latin
Latin squares of order = squares in the set

p in a transformation set

Orthogonal Latin squares
If two Latin squares of the same order but with different symbols are such that when they are superimposed
on each other, every ordered pair of symbols (different) occurs exactly once in the Latin square, then they

are called orthogonal.

Graeco-Latin square:
A pair of orthogonal Latin squares, one with Latin symbols and the other with Greek symbols form a
Graeco-Latin square.

For example

A BCD a fy o
B ADC oy p «a
CDARB p a oy
DCBA y da p

is a Graeco-Latin square of order 4.

Graeco Latin squares design enables to consider one more factor than the factors in Latin square design. For
example, in the earlier example, if there are four drivers, four cars, four petrol and each petrol has four

varieties, as «,f,y and 6, then Graeco-Latin square helps in deciding the treatment combination as

follows:
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Cars
1 2 3 4
a Aa Bp Cy Do
b Bo Ay Dp Ca
Drivers =2 CB | Da A5 By
d Dy Co Ba Ap

Now

Aa means: Driver ‘a’ will use the & variant of petrol A in Car 1.

By means: Driver ‘¢’ will use the  variant of petrol B in Car 4

and so on.

Mutually orthogonal Latin square
A set of Latin squares of the same order is called a set of mutually orthogonal Latin square (or a hyper
Graeco-Latin square) if every pair in the set is orthogonal. The total number of mutually orthogonal Latin

squares of order p is at most (p - 1).

Analysis of LSD (one observation per cell)
In designing an LSD of order p,
e choose one Latin square at random from the set of all possible Latin squares of order p.
e Select a standard Latin square from the set of all standard Latin squares with equal probability.

e Randomize all the rows and columns as follows:

- Choose a random number, less than p, say 7, and then 2™ row is the 7,” row.

- Choose another random number less than p, say 7, and then 3™ row is the nz"’ row and so on.

- Then do the same for the column.
e For Latin squares of the order less than 5, fix the first row and then randomize rows and then
randomize columns. In Latin squares of order 5 or more, need not to fix even the first row. Just

randomize all rows and columns.
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Example:

Suppose following Latin square is chosen

ABCDE
BCDEA
DEABC
EABCD
CDEAB

Now randomize rows, e.g., 3™ row becomes 5" row and 5% row becomes 3™ row . The Latin square

becomes

Now randomize columns, say 5" column becomes 1% column, 1

column becomes 5" column

ABCDE
BCDEA
CDEAB
EABCD
DEABUC.

EBCAD
A CDBE
DABEZC
CEADB
BDECA

Now use this Latin square for the assignment of treatments.

st column becomes 4™ column and 4%

Yy + Observation on k™ treatment in i row and /™ block, i=1,2,..,v, j=1,2,..,v, k=12,...v.

Triplets (7 ,j, k) take on only the v values indicated by the chosen particular Latin square selected for the

experiment.

Vs are independently distributed as N(u+a, + B, + 7, c’).
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Linear model is
Y =M+, +,Bj +7, +gy_k,i =12,..,v;j=12,..,vik=12,...,v

where ¢, are random errors which are identically and independently distributed following N(O, 02) .

with Zai =0, Zﬂl =0, Zrk =0,
i=1 Jj=1 k=1
@; : main effect of rows

ﬂj :main effect of columns

7, -main effect of treatments.

The null hypothesis under consideration are

Hy,:a,=0,=...=a,=0
Hy:p=p=.=5=0
Hy,:t,=7,=...=7,=0

The analysis of variance can be developed on the same lines as earlier.

Minimizing S = ZZ 255,( with respect to 4, ¢, B, and 7, given the least-squares estimate as

il j=l k=
:)_)uoo

i -)_}irm _)_}000 i=1,2,...,v
fz-)_}ﬂjﬂ_)_}ooo j:1,2,...,V
kz-)_}ook_.)_}goo k=1,2,...,V.

LD ™
Il

>

>

Using the fitted model based on these estimators, the total sum of squares can be partitioned into the
mutually orthogonal sum of squares SSR, SSC, SSTr and SSE as
TSS =SSR+ SSC + SSTr + SSE

where

2
V.o v v V. v v 5 G

TSS: Total sum of squares = Vi = Too)’ = Vo~

i=l j=1 k=1 i=1 j=1 k=1 v
v ZRlz G2 V. Vv

SSR: Sum of squares due to rows = VZ Ty = Vo)’ = A ———-; where R, = zz Vi
-1 1% 14 j=1 k=1

14 Z CY/2 G2 v v

SSC: Sum of squares due to column = VZ (Fjo = Vo)’ = F———; where C, = ZZyijk
P v v T =l kel

25
4 G 4 )4

SSTr : Sum of squares due to treatment = vz Tk = Vo0y)’ =— ; where 7, = Z Z Vik

i= _
2
k=1 v v i=1 j=1
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Degrees of freedom carried by SSR, SSC and SSTr are (v - 1) each.

Degrees of freedom carried by 7SS is v* —1.
Degree of freedom carried by SSE is (v- 1) (v - 2).

The expectations of mean squares are obtained as

E(MSR)=E[SS—RJ=O'+L o
v—1 v—13
E(MSC):E(&}GHLZﬁ?
_1 V—1j=] !
E(MSTr):E(SSTr)=02+L 72
V- V=1 %=
E(MSE)=E _SE |_o
(v-1)(r-2)
Thus
MSR
~under H,,, F, =——~ F((v=1),(v=1)(v=2
under H ., I, MSE (v-1),(v—=D(v-2))
-under H,, F,. :%N F((v-1),(v-D(v-2))
MSTr

-under H ., F, = VSE

Decision rules:
Reject H, atlevel a if Fi, > F|_,. 1) o2
Reject H. atlevel a if F. > Fi_,., 1) (102

Reject H, atlevel a it F. > F_,., ) (v 1y0-2)

~ F((v=-1),(v=D(v-2)).

If any null hypothesis is rejected, then use multiple comparison test.

The analysis of variance table is as follows

Source of Degrees Sum of Mean sum F
variation of freedom  squares of squares

Rows v-1 SSR MSR F,
Columns v-1 SSC MSC F
Treatments v -1 SSTr MSTr F,
Error (v-1)(v-2) SSE MSE

Total v -1 7SS
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